

# B.T.S FEE [D. Bord lycée St Michel – 54] *sem II*Measurement techniques



#### 1. Temperature measurement

In this section, we focus on RTD and thermocouples.

#### **RTD:** Resistive thermal device



#### Field of application:

•

**Principle:** the sensitive element of RTD is made from pure material whose resistivity varies as a function of temperature (Platinum Pt or Nickel Ni).

#### **Electrical symbol:**



This coefficient is called the sensitivity  $[\Omega/^{\circ}C]$ 



#### **Measurement range:**

o Pt100 : -200 à +650 °C

○ Pt1000 : -200 à +650 °C

o Ni1000 : -50 à +250 °C

#### **Characteristics:**

$$\circ$$
 R ( $\theta$ ) = 100 + (0,385) $\theta$ 

$$\circ$$
 R ( $\theta$ ) = 1000 + 3,85. $\theta$ 

$$\circ$$
 R ( $\theta$ ) = 1000 + 0,164. $\theta$ 

- What measuring instrument do you need to get temperature value with this type of sensor?
- The measuring instrument indicates 119  $\Omega$ , what is the corresponding temperature?

#### **Connecting:**

o **2-wire connection :** This connection is suitable for short distances



o **3-wire connection:** This connection helps removing error due to lead resistances



# [D. Bord lycée St Michel – 54] *sem II* Measurement techniques



dely used

neasurement

measurement e.g.: powerful industrial furnace

e measurement

vice made by two dissimilar metals joined together at the sensing end, end.

n junction end and tail end generates an Electro-motive Force (Emf)

$$E_{M} = E_{JE} - E_{TE} \\$$

and Emf is a non-linear function, each thermocouple has its own hermocouple conversion table:

| 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|-------|-------|-------|-------|-------|-------|-------|
| -1228 | -1263 | -1299 | -1334 | -1370 | -1405 | -1440 |
| -867  | -903  | -940  | -976  | -1013 | -1049 | -1085 |
| -496  | -534  | -571  | -608  | -646  | -683  | -720  |
| -116  | -154  | -193  | -231  | -269  | -307  | -345  |
| 117   | 156   | 195   | 234   | 273   | 312   | 351   |
| 510   | 549   | 589   | 629   | 669   | 709   | 749   |
| 911   | 951   | 992   | 1032  | 1073  | 1114  | 1155  |
| 1320  | 1361  | 1403  | 1444  | 1486  | 1528  | 1569  |
| 1738  | 1780  | 1822  | 1865  | 1907  | 1950  | 1992  |
| 2164  | 2207  | 2250  | 2294  | 2337  | 2380  | 2424  |

the temperature of a compressor. Your TESTO 922 is out of order, but in which you plug the K thermocouple probe. The voltmeter indicates appearature is 22°C, what is the outlet temperature of this compressor?



## B.T.S FEE [D. Bord lycée St Michel – 54] *sem II*Measurement techniques



### 2. Pressure measurement Pressure gauge or Manometer



Field of application: Pressure indication

#### Digital pressure transmitters





Field of application: Pressure control

e.g. Condensing unit with low pressure control



#### Digital differential pressure transmitters



#### Field of application:

- o gas or liquid flow measurement
- o liquid level measurement within tanks
- o testing how dirty an air filter is

E.g. Airflow measurement using velocity wing

-To controller



# B.T.S FEE [D. Bord lycée St Michel – 54] *sem II* Measurement techniques



#### 3. Level measurement

**Hydrostatic method measurement**: This method requires a differential pressure manometer.

**Field of application:** level measurement of liquid within tanks E.g. condensate recovery tanks



 $\Delta P = \rho \cdot g \cdot h + P_{ATM} - P_{ATM}$  as a result  $\Delta P$  is directly proportional to h





# B.T.S FEE [D. Bord lycée St Michel – 54] *sem II* Measurement techniques



#### Capacitive detectors and Float level switch



**Field of application**: these detectors provide on/off switch. They are ideal for low or high-level alarm application.







#### B.T.S FEE [D. Bord lycée St Michel - 54] sem II Measurement techniques



#### 4. Flow measurement

#### PITOT tube differential pressure flow-meter





Field of application: Airflow measurement

**Principle:** the fluid velocity is a function of the differential pressure.

$$v = \sqrt{\frac{2 \cdot (P \text{ totale - } P \text{ statique})}{\rho}}$$

#### oDiaphragm and Venturi method

Field of application: Gas and liquid flow measurement

**Principle**: an orifice or a restriction generates a pressure difference  $\Delta P$  that is a function of the volume flow rate:

 $O_v=k.\sqrt{\Delta P}$ 









#### B.T.S FEE

## Process Control & Instrumentation : Measurement techniques



#### 5. Humidity measurement



Hygrometer family includes quite a few different technologies for humidity measurement. The most widely used are impedance hygrometer.



**Principle of capacitive hygrometer:** The sensitive element of a hygrometer is a capacitance whose dielectric is made from a hygroscopic substance. This substance, with a thickness of few micrometers, is a polymer that absorbs water molecules contained in the air. As a result, the capacitance varies. A electronic device converts this capacitance variation into a relative humidity value.